

Building a Secure and Survivable Next Generation Internet

Marilyn McAllister SY Technology, Huntsville AL A Division of L3 Communications

Marilynm@sy.com

256-704-9627

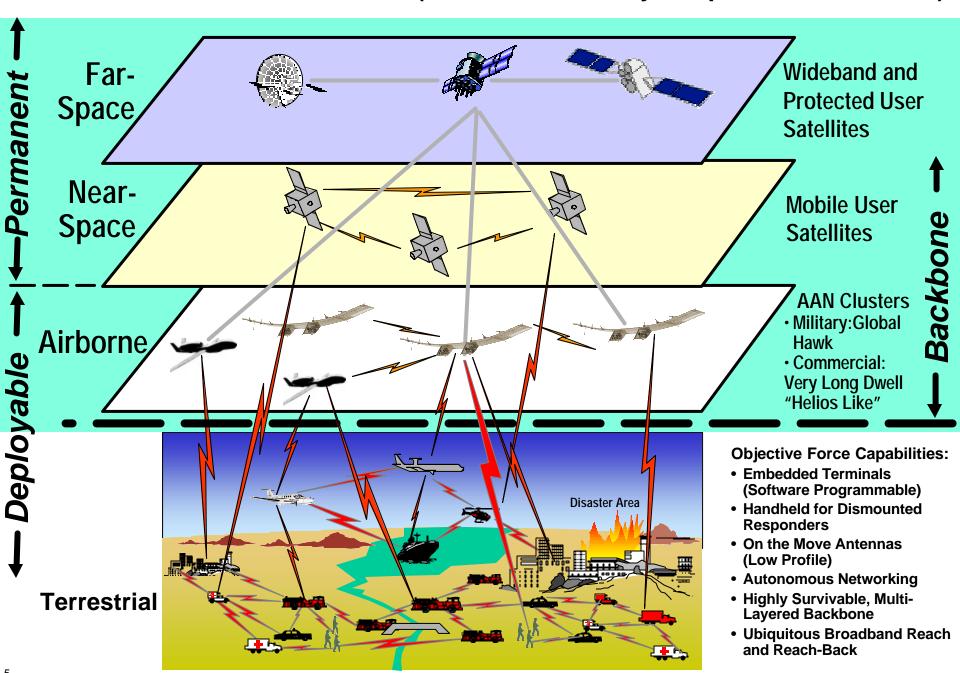
Building a Secure And Survivable Internet **Agenda**

- Architectural Weaknesses of Today's Internet
- Network and Network Security Architectures of the Future (2005+)
- Technologies Needed to Address
 Weaknesses
- Issues

Building a Secure And Survivable Internet Architectural Weaknesses of Today's Internet

Physical Architecture:

- Single layer Terrestrial Architecture heavily reliant on fiber backbone.
 - Easy to attack (backhoe, shovel, fishing net, boat anchor, bomb)
 - Fiber route locations available in the public domain
 - Repair/restoration time consuming
 - Extended regional outages possible



Building a Secure And Survivable Internet Architectural Weaknesses of Today's Internet

Network Security Architecture Weaknesses:

- Security Architectures Developed as afterthought
- Thousands of "back doors" and vulnerabilities
- Application of "software patches" time consuming
- The technical skills to identify and properly respond to major cyber attack beyond the skills of most systems administrators or network managers
- Tools to identify and respond to attacks inadequate
 - Just identifying whether the problem is an attack or system failure often difficult
- New "exploits" discovered and published worldwide daily
- Attacks becoming more sophisticated, software scripts widely available, required skills to conduct attack decreasing
- A risk accepted by one in the network is a risk imposed on all

Survivable Network Architecture (Homeland Security Response Force 2010+)

Building a Secure And Survivable Internet:

Future Technologies to Enhance Physical Survivability

Space:

(Internet in Space Adds Survivable Layer to Internet Architecture)

- Laser and Broadband Radio Frequency Cross-Links
- Optical Switching
- Cross-banding
- On Board Switching and Routing

(Provides
Emergency
Restoration if
Terrestrial
Infrastructure
Damaged or
Destroyed)

• Air:

- Long Loiter High Altitude Unmanned Vehicles
- Broadband Communications Links (To Space, Air, Terrestrial)
- On Board Switching And Routing

Terrestrial

(Reduces Reliance on Vulnerable Fiber Links, Speeds Restoration)

- Broad Band Radio Frequency Nodes and User Terminals
- Directional Antennas (Phased Array)
- Rapid Recovery Nodes/Teams

Building a Secure And Survivable Internet:

SyTechnology Future Technologies to Enhance Physical Survivability

(Assures Rapid Restoration and **Enhances** Security)

Network:

- Autonomous Networking
- Ad Hoc Networking Protocols
- Secure "Next Generation IP"

SY0101 7 07/03/2002

Network Security Architecture

Building a Secure And Survivable Internet: Future Technologies to Enhance Cyber Security

- Broadband Radio Frequency and Laser Link Encryption
- Unbreakable End to End Encryption (Quantum?)
- Advanced Firewalls
- Real Time Attack Sensing (vs. System Failure)
- Advanced Intrusion Detection
- Attacker Response: Hot Pursuit, Backtracking, Disabling
- Network and Computer Forensics
- Trojan Horse Detectors
- Advanced Virus Detectors
- Virus "Sponge"
- Advanced System "Scrubbers" and "Sanitizers"
- Advanced Software Patch Implementation
- Advanced Network Security Scanning
- "Virtual Presence" Network Security Monitoring

Secure And Survivable Internet Architectural Design Principles

Physical Security Enhancements:

- Multi-Layered Network Architecture (Space, Air, Terrestrial Layers)
- Redundant Nodes, Multi-Link Topologies (Eliminate Single Point Failures)

Cyber Security Enhancements:

- Multi-Layered Network Security Architecture
- Security Standards Compliance (ISO 17799, etc.)

Both:

- Systems And Network Hardening
- Back Door Elimination

Building a Secure And Survivable Internet: Information Infrastructure Protection Issues

- Who Is The Overall Integrator?
 - Government + Commercial, Space+ Air+Terrestrial
 - Who Pays?
- What Is The Role Of The Department Of Homeland Security?
- Are DoD "Protected" and/or "Secure" Communications Needed to Support Mission Critical Commercial Users In Homeland Security Scenarios?
 - (Banking, Commerce, Transportation, Medical, etc.)
- How Much "Protected" Communications Are Required To Run Federal, State, Local Governments, Restore Critical Economic Functions, And Support Disaster Recovery Teams?
- Who Gets Communications Priority?
- Is A System Similar to DoD's INFOCON Levels Needed For the U.S.
 Commercial Internet Based On Cyber Threat Level?
 - Are there scenarios where the U.S. commercial Internet would be shut off from the rest of the world to protect our infrastructure from attack.

– How do we respond to attacks originated in other countries?

